Search results for "Vector algebra"

showing 1 items of 1 documents

Pseudodifferential operators on manifolds with a Lie structure at infinity

2003

to appear in Anal. Math.; Several examples of non-compact manifolds $M_0$ whose geometry at infinity is described by Lie algebras of vector fields $V \subset \Gamma(TM)$ (on a compactification of $M_0$ to a manifold with corners $M$) were studied by Melrose and his collaborators. In math.DG/0201202 and math.OA/0211305, the geometry of manifolds described by Lie algebras of vector fields -- baptised "manifolds with a Lie structure at infinity" there -- was studied from an axiomatic point of view. In this paper, we define and study the algebra $\Psi_{1,0,\VV}^\infty(M_0)$, which is an algebra of pseudodifferential operators canonically associated to a manifold $M_0$ with the Lie structure at …

Mathematics - Differential GeometryPure mathematicsVector algebraRiemannian geometry01 natural sciencessymbols.namesakeMathematics (miscellaneous)Mathematics - Analysis of PDEs0103 physical sciencesLie algebraFOS: MathematicsCompactification (mathematics)0101 mathematicsMathematics010102 general mathematicsHigh Energy Physics::PhenomenologyRiemannian manifoldDifferential operatorCompact operatorAlgebraOperator algebraDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]symbols010307 mathematical physicsStatistics Probability and Uncertainty[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Analysis of PDEs (math.AP)
researchProduct